Fortalecer los músculos de la cadera puede reducir el dolor de rodilla

31 10 2011

Un equipo de investigadores canadienses ha publicado un estudio que demuestra que los corredores con dolor en la rodilla mejoran notablemente si siguen un intenso programa de fortalecimiento de la cadera. Los investigadores sometieron a corredores lesionados a dos ejercicios simples de fortalecimiento de la cadera, y en tres semanas se observó que los corredores tenían un 40% menos dolor, menos variabilidad de movimiento entre paso y paso, y más fuerza para ayudarles a gestionar sus movimientos de forma segura. Este estudio es una gran noticia para los corredores que sufren de dolor crónico de rodilla. El equipo canadiense ha demostrado que el fortalecimiento de los músculos críticos de la cadera ayuda a los corredores a restaurar un más consistente y predecible patrón de movimiento y a reducir el dolor en la rodilla.

Resumen de los ejercicios de fortalecimiento de la cadera llevados a cabo por los corredores que han participado en el estudio.

Puede consultarse en estudio completo en este enlace: http://www.nata.org/sites/default/files/JAT-46-2-pg-142-149.pdf

Runninginjuryclinic.com [en línea] Calgary (Canadá): runninginjuryclinic.com, 31 de octubre de 2011 [ref. marzo/abril de 2011] Disponible en Internet:

http://www.runninginjuryclinic.com/





Las células tumorales de colon que hacen metástasis en el hígado se vuelven más agresivas en respuesta al nuevo microambiente hostil

27 10 2011

Determinadas células sanas del hígado promueven una respuesta adaptativa en células de cáncer colorectal inhibiendo su proliferación y provocando su muerte. Las células tumorales que se adaptan, cambian su comportamiento y su morfología, favoreciendo la migración.

Investigadores del Instituto de Investigación Biomédica de Bellvitge (IDIBELL) y del Instituto Catalán de Oncología (ICO), coordinados por David García Molleví, han publicado los resultados de este estudio en la revista Neoplasia.

El microambiente celular (denominado estroma) tiene un papel dual en el control del desarrollo normal o maligno de las células: por un lado, impide el crecimiento de proliferación anormal (neoplasia) en los tejidos normales mientras que por el otro puede potenciar el crecimiento y la invasión tumoral en la progresión del cáncer.

El cáncer es un tejido complejo dónde actúan diferentes tipos de células (el 80% son de un tipo denominado fibroblastos) que conviven con otras células creando un microambiente particular. El balance entre estas poblaciones: el ambiente, puede determinar el destino del tumor.

Un microambiente hostil

El objetivo del estudio es comparar la influencia del microambiente en tres situaciones diversas: en un tejido colorectal sano, en un tumor colorectal primario y en un tumor colorectal que ha hecho metástasis al hígado.

En el tumor primario, los fibroblastos del colon aumentan la proliferación de las células malignas y las protegen de la muerte celular programada (apoptosis). En cambio, en la situación de metástasis al hígado, las células tumorales se encuentran en un ambiente hostil de fibroblastos hepáticos, no sólo disminuye su proliferación, sino que muchas mueren. Las células que consiguen adaptarse a este ambiente cambian su comportamiento y su morfología para favorecer su migración. Estas células tumorales adaptadas son más agresivas.

Según David Garcia Molleví, coordinador del estudio, este descubrimiento puede ser útil en la práctica clínica ya qué “abre las puertas a estudiar el mecanismo o los factores de los fibroblastos hepáticos que producen la muerte de las células tumorales colorectales para utilizarlos en el futuro como herramientas terapéuticas contra el tumor de colon metastático”.

Cambios en las células tumorales de colon que hacen metástasis en el hígado

Referencia del artículo

 Mireia Berdiel-Acer, Monika Bohem, Adriana López-Doriga, August Vidal, Ramon Salazar, Maria Martínez-Iniesta, Cristina Santos, Xavier Sanjuan, Alberto Villanueva and David G. Molleví. Hepatic Carcinoma-associated fibroblasts promote an adaptative response in colorectal cancer cells that inhibit proliferation and apoptosis. Neoplasia. Volume 13 Number 10 October 2011 pp. 931946

 





No Cellphone-Cancer Link in Large Study

24 10 2011

A major study of nearly 360,000 cellphone users in Denmark found no increased risk of brain tumors with long-term use.

Although the data, collected from one of the largest-ever studies of cellphone use, are reassuring, the investigators noted that the design of the study focused on cellphone subscriptions rather than actual use, so it is unlikely to settle the debate about cellphone safety. A small to moderate increase in risk of cancer among heavy users of cellphones for 10 to 15 years or longer still “cannot be ruled out,” the investigators wrote.

The findings, published in the British Medical Journal BMJ as an update of a 2007 report, come nearly five months after a World Health Organization panel concluded that cellphones are “possibly carcinogenic.” Last year, a 13-country study called Interphone also found no overall increased risk but reported that participants with the highest level of cellphone use had a 40 percent higher risk of glioma, an aggressive type of brain tumor. (Even if the elevated risk of glioma is confirmed, the tumors are relatively rare, and thus individual risk remains minimal.)

The Danish study is important because it matches data from a national cancer registry with mobile phone contracts beginning in 1982, the year the phones were introduced in Denmark, until 1995. Because it used a computerized cohort that was tracked through registries and digitized subscriber data, it avoided the need to contact individuals and thus eliminated problems related to selection and recall bias common in other studies.

However, the major weakness of the study is that it counted cellphone subscriptions rather than actual use by individuals, and failed to count people who had corporate subscriptions or who used cellphones without a long-term contract. Those small details could have diluted any association between cellphone use and cancer risk, the investigators conceded.

An accompanying editorial noted that although the results are reassuring, they must be viewed in the context of about 15 previous studies on cellphones and cancer risk, including those that did detect an association between heavy cellphone use and certain brain tumors.

Anders Ahlbom, a professor of epidemiology at the Karolinska Institute in Sweden and an author of the editorial, said in an e-mail that research on the subject should continue.

“Many stones have been lifted, but little has been found,” he wrote. “While there is little reason to expect anything to be found beneath the next stone, some uncertainty remains. We have learned that studies based on historical accounts of cellphone use are prone to bias. So a reasonable way forward seems to be to follow national statistics and prospective cohorts.”

Nytimes.com [en línea] Nueva York (USA): nytimes.com, 24 de octubre de 2011 [ref. 20 de octubre de 2011] Disponible en Internet:

http://well.blogs.nytimes.com/2011/10/20/study-finds-no-link-between-cellphones-and-brain-tumors/?ref=health






Transforming Drug Development

17 10 2011

Taking aim at the alarming slowdown in the development of new and lifesaving drugs, Harvard Medical School is launching an  Initiative in Systems Pharmacology, a comprehensive strategy to transform drug discovery by convening biologists, chemists, pharmacologists, physicists, computer scientists and clinicians to explore together how drugs work in complex systems.

“With this Initiative in Systems Pharmacology, Harvard Medical School is reframing classical pharmacology and marshaling its unparalleled intellectual resources to take a novel approach to an urgent problem,” said Jeffrey S. Flier, dean of the Faculty of Medicine at Harvard University, “one that has never been tried either in industry or academia.”

Modern drug discovery has focused on the interaction between a candidate drug and its immediate cellular target. That target is part of a vast and complex biological network, but because studying the drug in the context of a living system is profoundly difficult, scientists have largely avoided this approach.

As a result, predicting the effects of a particular candidate drug in humans is currently all but impossible, and many initially promising drugs have been found to lack efficacy or to have unsupportable levels of toxicity—typically at a late stage of a clinical trial, at a cost of years of effort and up to $1 billion.

“Right now in the world of drug discovery, it’s as if we have a map of a highway system that only contains small pieces extending a few miles here and there, without any connectivity on a large scale,” said Marc Kirschner, the John Franklin Enders University Professor of Systems Biology and chairman of the HMS Department of Systems Biology. “If you try to plan a trip on such fragmentary information, you’ll fail. It’s our inability to develop a coherent picture that has stymied drug discovery for so long.”

As drug makers exhaust the most promising candidate areas, the number of new drugs brought to patients has actually decreased in recent years, even as the cost of discovery has soared.

A better understanding of the whole system of biological molecules that controls medically important biological behavior, and the effects of drugs on that system, will help industry identify the best drug targets and biomarkers. This will help to select earlier the most promising drug candidates, ultimately making drug discovery and development faster, cheaper and more effective.

“Through this new initiative, we will develop large-scale models of biological systems and networks which should more accurately predict drug efficacy,” Kirschner added.

The systems approach

The science of analyzing specific biological processes within the context of an entire living system, called systems biology, is relatively new. Harvard Medical School is a world-leader in this area, having established one of the first department-level programs in 2003.

Building on this success, Harvard’s new effort will apply systems biology’s innovative approaches to the understanding and prediction of drug activity, drawing on the vast range of biomedical expertise available at the medical school and its affiliated teaching hospitals and research institutes.

Led by Kirschner and systems biology professors Peter Sorger and Tim Mitchison, the Initiative in Systems Pharmacology will include faculty from a broad array of disciplines: systems biology, cell biology, genetics, immunology, neurobiology, pharmacology, medicine, physics, computer science and mathematics. The initiative will be fueled by a strong and diverse group of existing faculty and new recruits who will be based in several departments, and will be supported by an ambitious fundraising effort.  New approaches could include use of chemical biology to develop probes of biological pathways and failure analysis on unsuccessful drugs, similar to how the aviation industry scrupulously analyzes accidents to learn what went wrong. Such a practice is not common in today’s pharmaceutical industry.

Other projects currently underway at HMS will be expanded through the new initiative.

For example, Sorger and Mitchison collaborate with Ralph Weissleder, HMS professor of radiology and director of the Center for Systems Biology at Massachusetts General Hospital, to probe the mechanism by which anti-cancer drugs kill tumor cells in patients and thereby make the effects of treatment more predictable.  “What’s amazing is how little we know even about many drugs that work,” Sorger said. “A systems approach could help tailor existing treatments to specific patients, and find new uses for therapies we already have.”

And in the lab of systems biology professor Roy Kishony, scientists research the evolutionary forces that shape the emergence of antibiotic-resistant bacteria, seeking strategies for developing combination therapies to slow or reverse the spread of drug resistance.

The initiative will also include a new educational program, one that develops a new generation of students, postdoctoral fellows and physician-scientists. The goal is to train future leaders in academic and industrial efforts in systems pharmacology and therapeutic discovery.

Transforming therapeutics

The Initiative in Systems Pharmacology is a signature component of an HMS Program in Translational Science and Therapeutics. There are two broad goals: first, to increase significantly our knowledge of human disease mechanisms, the nature of heterogeneity of disease expression in different individuals, and how therapeutics act in the human system; and second—based on this knowledge—to provide more effective translation of ideas to our patients, by improving the quality of drug candidates as they enter the clinical testing and regulatory approval process, aiming to increase the number of efficacious diagnostics and therapies reaching patients.

“Systems pharmacology is the first and a key pillar of Translational Science and Therapeutics at Harvard Medical School,” said William Chin, the Bertarelli Professor of Translational Medical Science, executive dean for research at HMS and former head of research for Eli Lilly & Co.

“We intend to harness all the strengths of HMS to gain a deeper understanding of the cause and nature of disease, addressing some of the most vexing questions that continue to impede the development of new drugs,” Chin said. “We will focus our strengths and resources to translating such knowledge into new classes of life-saving medicines.”

Focushms.com [en línea] Boston (USA): focushms.com, 17 de octubre de 2011 [ref. 17 de octubre de 2011] Disponible en Internet:

http://www.focushms.com/features/transforming-drug-development/